

The Quantum Countdown Quantum Computing And The Future Of Smart Ledger Encryption

Long Finance Webinar Wednesday, 01 August 2018, 15:00 to 15:30 BST (presentation starts at 15:02)

Z/Yen Group Limited

Risk Reward Managers 41 Lothbury London EC2R 7HG United Kingdom tel: +44 (20) 7562-9562 <u>www.zyen.com</u>

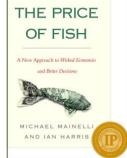
15:02 – 15:05 Introduction

- 15:05 15:25 Presentation
- 15:25 15:30 Concluding Remarks

Introduction

James Pitcher Programme Director Z/Yen Group

james_pitcher@zyen.com



- Special City of London's leading commercial think-tank
- Services projects, strategy, expertise on demand, coaching, research, analytics, modern systems
- Sectors technology, finance, voluntary, professional services, outsourcing
 - Independent Publisher Book Awards Finance, Investment & Economics Gold Prize 2012 for The Price of Fish
 - British Computer Society IT Director of the Year 2004 for PropheZy and VizZy
 - DTI Smart Award 2003 for PropheZy
 - Sunday Times Book of the Week, Clean Business Cuisine
 - £1.9M Foresight Challenge Award for Financial £aboratory visualising financial risk 1997

An open source research programme for Smart Ledgers and new technologies.

Our research is structured around four themes:

- Society
- Technology
- Economics
- Politics

And is directed at four outcomes:

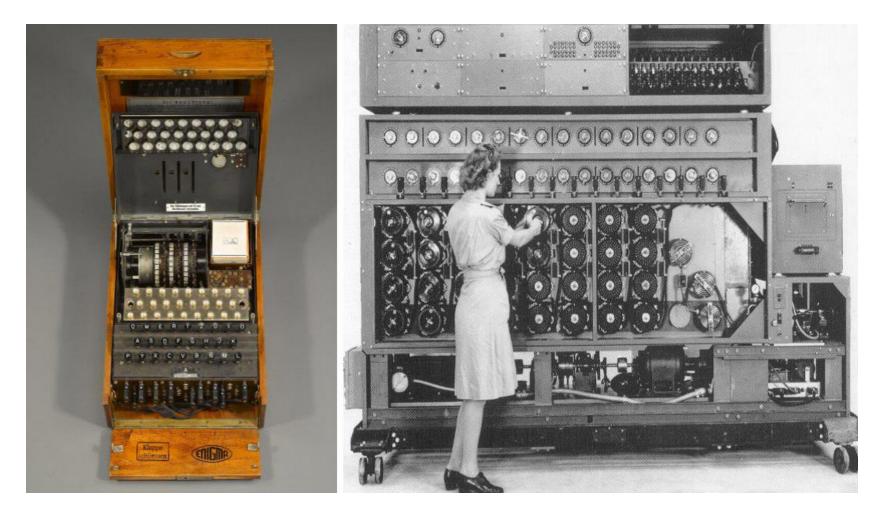
- Expanding frontiers
- Changing systems
- Delivering services
- Building communities

www.distributedfutures.net

Presentation

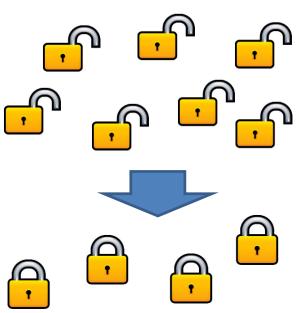
Maury Shenk

Maury Shenk Managing Director Lily Innovation



Large-scale quantum *computers* would pose *a serious threat* to the security of *public* key cryptography So what should affected entities do, and when?

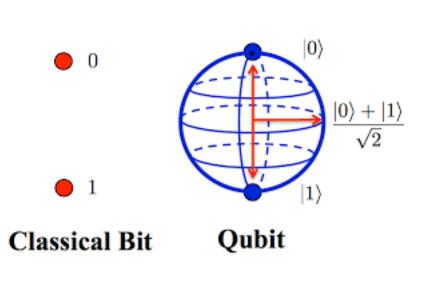
Symmetric Cryptography

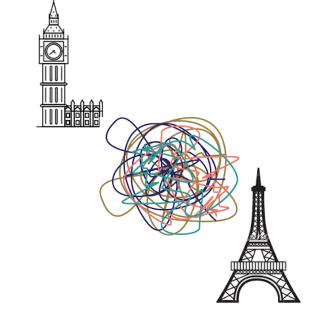


Public Key Cryptography

- Uses public and private keys for each communication, avoiding need for key exchange
- Based on problems that are "hard" in one direction (*eg* knapsack problem or integer factorisation)
- Used for Smart Ledger digital signature

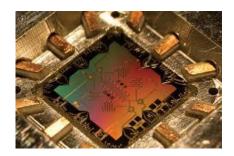
Technique	Sender Uses	Recipient Uses	Why It Works
Public key secure communication	Recipient's public key	Recipient's private key	Only recipient (using her private key) can read messages encrypted with her public key
Public key digital signature	Sender's private key	Sender's public key	Only sender can sign with her private key, and recipient can use the sender's public key to confirm signature




B Large-scale quantum *computers* would pose *a serious threat* to the security of *public* key cryptography So what should affected entities do, and when?

Quantum Phenomena

Superposition


Entanglement

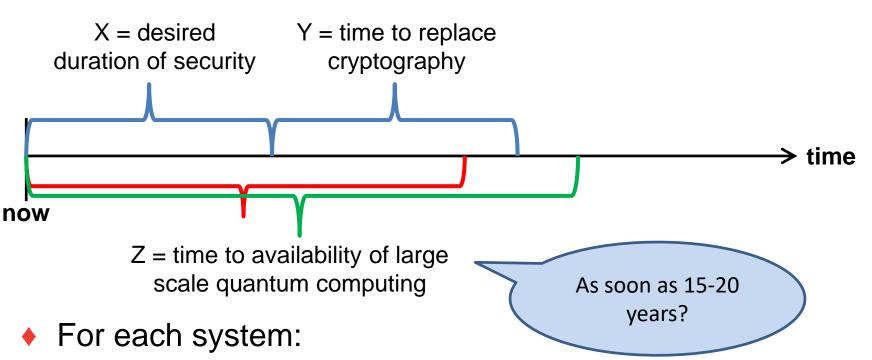


Quantum Computers

- Proposed by Richard Feynman in 1981
- Progress with entangled qubits
 - > 1998 2
 - > 2011 14
 - 2018 72 (Intel, Google)
- Physical qubits (the numbers above)
 - Low-temperature devices showing quantum effects
 - Decoherence currently after ~ 90 microseconds
- Logical qubits (do not exist yet)
 - Stable computing devices
 - 10,000+ physical qubits required for one logical qubit
 - > 3000-5000 logical qubits required to attack current public key cryptography

³ Large-scale quantum *computers* would pose *a serious threat* to the security of *public* key cryptography So what should affected entities do, and when?

The Quantum Threat


- The new math!
- Shor's algorithm
 - Discovered in 1994 at Bell Laboratories
 - Would allow a sufficiently powerful quantum computer to solve quickly the hard problems underlying the most common public key cryptography algorithms (including RSA, ECDSA, Diffie-Hellman)
 - RSA is commonly used for securing web connections
 - ECDSA is standard algorithm for blockchain signatures
 - Sufficiently powerful" means about 3000-5000 logical qubits for RSA-2048
 - Prompted increased interest in quantum computers
- Grover's algorithm
 - Discovered in 1996 at Bell Laboratories
 - Provides quadratic speed-up for attacking symmetric cryptography and hash algorithms
 - > Hash algorithms (particularly SHA-256) are key for blockchain
- But there are good alternatives that avoid these threats

³ Large-scale quantum *computers* would pose *a serious threat* to the security of *public* key cryptography So what should affected entities do, and when?

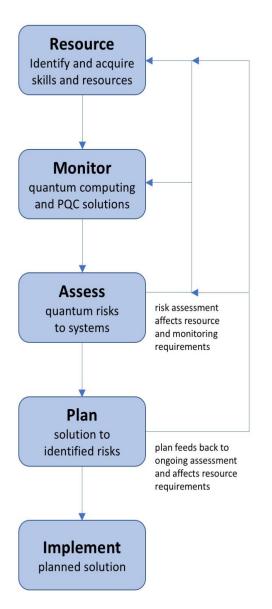
CHONG FINANCE The Mosca Inequality

- > If X + Y < Z, there is time to act
- If X + Y > Z, it may already be too late to entirely avoid the postquantum cryptography problem
- Some systems may fall into the second category particular issue for blockchain / Smart Ledgers, where X is very large

³ Large-scale quantum *computers* would pose *a serious threat* to the security of *public* key cryptography So what should affected entities do, and when?

Don't Panic

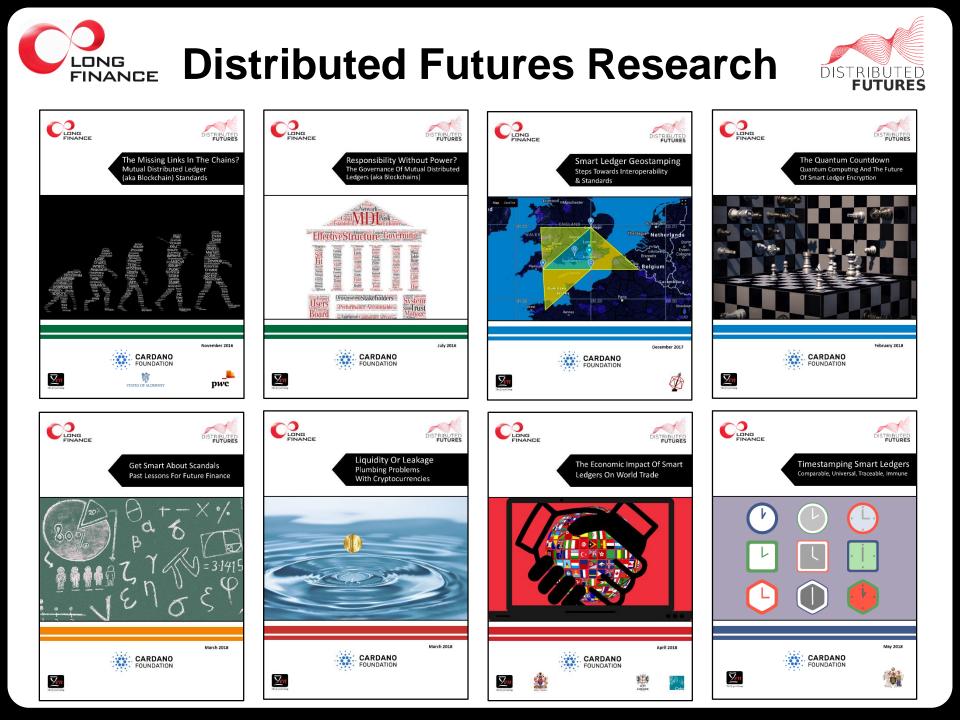
- Is this like the Y2K problem? no certain deadline
- Maybe more like climate change? uncertainty as to timing and impacts



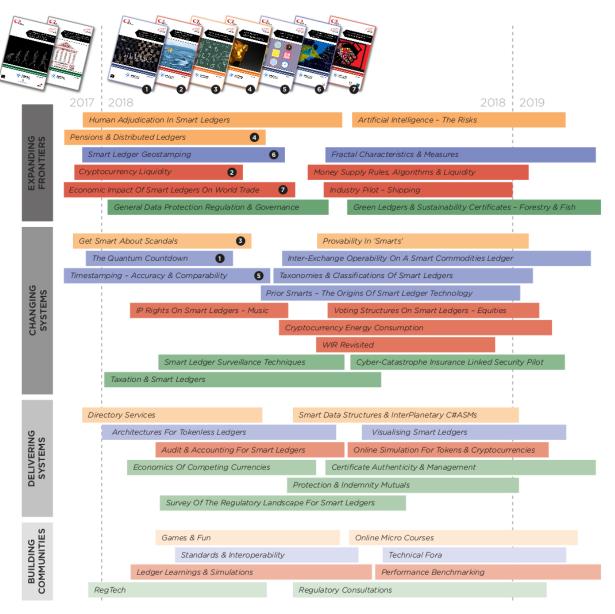
- EU PQCRYPTO recommendations (2015)
- US National Institute of Standards and Technology competition (2016 - around 2022)
- Promising families of quantum-resistant algorithms
 - Lattice
 - Signature-based
 - Code-based
 - Multivariate
 - Supersingular elliptic curve isogeny

A Programme of Action

- An obvious conclusion?
 - New systems should be quantum resistant from the start, to avoid risks (and costs of re-engineering)
 - But many Smart Ledgers and other new systems are not taking this approach, including because most familiar / off-theshelf components are not quantum-resistant


Concluding Remarks

James Pitcher Programme Director Z/Yen Group


james_pitcher@zyen.com

Timeline

Next Steps

- Distributed Futures <u>www.distributedfutures.net</u>
- Cardano Foundation -<u>https://cardanofoundation.org/</u>
- Long Finance <u>www.longfinance.net</u>

"Get a big picture grip on the details." Chao Kli Ning

Thank you!

