

Expect Excellence

valcon

FEATURE	
SPACE	
	OUTSMART RISK

Satellite Technology For Assessing Global Terrestrial Carbon Stock – State Of The Art & Future

Kaupo Voormansik, CEO & Co-Founder, KappaZeta

Webinar

Tuesday, 26 September 2023

A Word From Today's Chairman

Simon Mills Senior Associate Z/Yen Group

- 11:00 11:05
 Chairman's Introduction
- 11:05 11:25 Keynote Presentation Kaupo Voormansik
- 11:25 11:45 Question & Answer

Today's Speaker

Kaupo Voormansik CEO & Co-Founder KappaZeta

KAPPAZETA

Satellite Technology for Assessing Global Terrestrial Carbon Stock – State of the Art & Future

Kaupo Voormansik

Z/Yen Group webinar 27.09.2023

Outline

- 1. The presenter and KappaZeta team.
- 2. Satellite methods for assessing global carbon stock:
 - advantages,
 - the methods,
 - current and upcoming relevant satellite missions.
- 3. Our planned breakthrough 3D-SAR satellite mission:
 - advantages,
 - applications enabled,
 - the concept for implementation,
 - status in September 2023,
 - cooperation opportunities.
- 4. References.

*XABBYZELV

Presenter and KappaZeta background

Kaupo Voormansik

- Co-founder and CEO of KappaZeta.
- PhD in physics (synthetic aperture radar – SAR), University of Tartu, MSc in space studies, ISU, France, MSc in Computer Science, University of Tartu.
- Visiting researcher in German Aerospace Center 2011/12 and 2014.
- Systems engineer of 1st Estonian satellite ESTCube-1, successful launch in 2013.

KappaZeta

- Earth Observation services company.
- Agriculture, forestry and defence applications.
- Synthetic aperture radar and AI technologies.
- Founded in 2015 as the spin-off of Tartu Observatory, University of Tartu.
- 16-people team (6 PhDs).
- Raised €480 000 investment in 2023.

*XYPP/ZZT/

Satellite technology vs terrestrial and airborne/drone measurements for terrestrial carbon stock estimation

Advantages	Disadvantages
 Truly global coverage. Frequent updates. Price per km². Uniform data quality. Independent 3rd party validation is easier thanks to open data policy. No local interference at data collection. 	• Lower accuracy.

KV66VZCLV

Terrestrial carbon stock estimation with satellite technology

Section	Assessment methods with satellite technology
Above-ground biomass	 Optical reflectance and SAR backscatter proxy methods, fitting a model that captures the empirical relation best (less accurate, but there is abundance of data). Via direct measurement of the biomass height and volume with LiDAR or interferometric SAR (more accurate, but lack of data). Via physical modelling – Net and Gross Primary Production (how to handle the gaps due to cloud cover?)
Roots	• Via modelling, knowing the above-ground biomass, its species, age and soil type.
Soil	 Via modelling, knowing the above-ground biomass, its species, age and soil type. Indirect proxy methods by measuring the top layer reflectance with multispectral or hyperspectral imager (works for bare soil).
Fauna	• ??

*XA6VX2ELV

State of the art methods

- Achieve down to 25-30% uncertainties.
- Often use airborne/drone LiDAR as the ground reference.
- Use AI (deep learning) to capture the empirical correlations best.
- Combine multiple spaceborne data sources with auxiliary terrestrial GIS data layers.
- Take advantage of direct forest height/volume measurements with GEDI spaceborne LiDAR and/or TanDEM-X interferometric SAR.

*XABBYZELV

Relevant satellite missions

Method	Current missions	Future missions
Proxy via optical reflectance	Sentinel-2, Landsat-8,-9, Planetscope	Sentinel-2NG
Proxy via SAR backscatter	Sentinel-1, ALOS-2, RADARSAT-2 and RCM,	NISAR, BIOMASS, ROSE-L, Sentinel-1NG
Direct vegetation height measurement with LiDAR	GEDI (on ISS, currently in storage), ICESat-2 ATLAS	Nuview constellation
Direct vegetation height measurement with interferometric SAR	TanDEM-X	BIOMASS, 3D-SAR
Net and Gross Primary Production modelling	MODIS, Sentinel-3 OLCI	

*XAbbyZELV

KappaZeta's planned 3D-SAR satellite mission

3D-SAR

- Passive receivers to make Sentinel-1 data 3-dimensional.
- Global, comparable, accurate & affordable data set for carbon stock estimate.
- <u>Killer combination of high</u> <u>accuracy, reasonable price and</u> <u>global coverage.</u>
- All existing Sentinel-1 applications benefit from added height dimension.
- Relatively low investment ~20 MEUR.

*XA6VX2ELV

Drawing by Taavi Torim and European Space Agency

Forest biomass with carbon stock estimate at parcel level

103.8 t/ha

Direct physical volume measurement, excellent combination of global coverage and accuracy (~10% error at parcel level).

82.4 t/ha

KV66VZELV

Enabled applications and use cases

Use case	Relevance	
1) Global forest carbon stocks and biomass data for carbon trading and climate policy making.	Fast growing market, increasing interest. Lack of accurate and transparent global data source. Single-pass across-track InSAR probably the best combination between price and accuracy.	
2) Mapping forest and agri-biomass for bio-based circular economy.	Transition from oil- and gas-based economy to bio-materials based circular economy. Biomass is a critical resource as a fuel and raw material for the manufacturing industry.	
3) Landscape passability and cover mapping for defense and rescue use.	Existing military VHR SAR systems have very limited coverage, no height and vegetation density estimate. Critical to plan defense and offense routes.	
4) High resolution coastal surface current fields, bulk wave parameters and wave density spectra estimations.		
5) Improving existing agri- and forestry applications on Sentinel-1 data.	Existing Sentinel-1 feature set is rather limited. Most of existing agricultural and forestry applications would benefit from a richer feature set SAR data. More linearly independent input features -> <u>higher accuracy AI models -> more value for clients->EO sector growth</u> .	

*XAbbyZELV

Status in September 2023

- Mission architect will join in October and mission manager in November 2023.
- Phase 0 will start late this year:
 1)user requirements and relations development,
 2) alternative mission concepts development,
 3) space hardware partners mapping and relations development.

KVbbVZ{LV

Contact me if you would like to:

- Team up for market analysis.
- Use our future data products.
- Invest into us in the next phase, when we start to build the satellites and its ground segment.

Thank you!

<u>kaupo.voormansik@kappazeta.ee</u> +372 56 669 225 <u>WWW.KAPPAZETA.EE</u>

References (1)

- Choi, C., Cazcarra-Bes, V., Guliaev, R., Pardini, M., Papathanassiou, K.P., Qi, W., Armston, J. and Dubayah, R.O., 2023. Large-Scale Forest Height Mapping by Combining TanDEM-X and GEDI Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, pp.2374-2385.
- Schlund, M., Wenzel, A., Camarretta, N., Stiegler, C. and Erasmi, S., 2022. Vegetation canopy height estimation in dynamic tropical landscapes with TanDEM-X supported by GEDI data. Methods in Ecology and Evolution.
- Choi, C., 2023. Combining TanDEM-X interferometric SAR and GEDI lidar measurements for improving forest height, structure and biomass estimates (Doctoral dissertation, ETH Zurich).
- Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Silva, C.A., Armston, J., Luthcke, S.B., Hofton, M. and Kellner, J.R., 2020. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment, 242, p.111779.
- Dorado-Roda, I., Pascual, A., Godinho, S., Silva, C.A., Botequim, B., Rodríguez-Gonzálvez, P., González-Ferreiro, E. and Guerra-Hernández, J., 2021. Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests. Remote Sensing, 13(12), p.2279.
- Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W., Pang, Y., Rahman, A.F. and Sun, G., 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, p.111383.
- Sun, W. and Liu, X., 2020. Review on carbon storage estimation of forest ecosystem and applications in China. Forest Ecosystems, 7(1), pp.1-14.
- Huang, H., Liu, C., Wang, X., Zhou, X. and Gong, P., 2019. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sensing of Environment, 221, pp.225-234.
- Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G. and Bochtis, D., 2019. Remote sensing techniques for soil organic carbon estimation: A review. Remote Sensing, 11(6), p.676.
- Tian, L., Wu, X., Tao, Y., Li, M., Qian, C., Liao, L. and Fu, W., 2023. Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests, 14(6), p.1086.
- Santoro, M. and Cartus, O., 2018. Research pathways of forest above-ground biomass estimation based on SAR backscatter and interferometric SAR observations. Remote Sensing, 10(4), p.608.

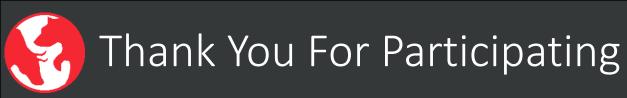
<u>KV66VZELV</u>

References (2)

- Bispo, P. D. C., Pardini, M., Papathanassiou, K. P., Kugler, F., Balzter, H., Rains, D., ... & Araujo, L. S. (2019). Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry. *Remote Sensing of Environment*, 232, 111194.
- Ignatenko, V., Laurila, P., Radius, A., Lamentowski, L., Antropov, O., & Muff, D. (2020, September). ICEYE Microsatellite SAR Constellation Status Update: Evaluation of first commercial imaging modes. In *IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium* (pp. 3581-3584). IEEE.
- Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., & Zink, M. (2007). TanDEM-X: A satellite formation for high-resolution SAR interferometry. *IEEE Transactions on Geoscience and Remote Sensing*, 45(11), 3317-3341.
- López-Dekker, P., Rott, H., Prats-Iraola, P., Chapron, B., Scipal, K., & De Witte, E. (2019, July). Harmony: An Earth explorer 10 mission candidate to observe land, ice, and ocean surface dynamics. In *IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium* (pp. 8381-8384). IEEE.
- Moreira, A., Krieger, G., Hajnsek, I., Papathanassiou, K., Younis, M., Lopez-Dekker, P., ... & Parizzi, A. (2015). Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth's surface. *IEEE Geoscience and remote sensing magazine*, *3*(2), 8-23.
- Olesk, A., Voormansik, K., Vain, A., Noorma, M., & Praks, J. (2015). Seasonal differences in forest height estimation from interferometric TanDEM-X coherence data. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 8(12), 5565-5572.
- Potin, P., Rosich, B., Miranda, N., Grimont, P., Shurmer, I., O'Connell, A., ... & Gratadour, J. B. (2019, July). **Copernicus Sentinel-1 constellation mission operations status**. In *IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium* (pp. 5385-5388). IEEE.
- Schlund, M., von Poncet, F., Hoekman, D. H., Kuntz, S., & Schmullius, C. (2014). Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring. Remote Sensing of Environment, 151, 16-26.
- Zonno, M., Matar, J., de Almeida, F. Q., Younis, M., Reimann, J., Rodriguez-Cassola, M., ... & Tossaint, M. (2021, March). Sentinel-1 Next Generation: main mission and instrument performance of the Phase 0. In EUSAR 2021; 13th European Conference on Synthetic Aperture Radar (pp. 1-5). VDE.

KVbbVZELV

Comments, Questions & Answers



Forthcoming Events

- Thu, 28 Sept (09:00-09:45)
 Launch Of Global Financial Centres Index 34
- Thu, 28 Sept (17:30 20:30)
 FS Club Mixer Creating Real Business Value From AI
- Thu, 05 Oct (11:00 11:45) A New Regime For Environmental Law

Visit https://fsclub.zyen.com/events/forthcoming-events/

Watch past webinars https://www.youtube.com/zyengroup