€

o

Functional Programming
and Finance

Philip VWadler
University of Edinburgh / IOHK

QNLVE ,?&
"
i A
[57 / -
o A T
A £ D &
IND®

Haskell and Finance

ko

Security. Performance. Proof.

ko

F ABN-AMRO
BankofAmerlca”// %? -(I;?ALI:’TTL,LL
CREDIT SUISSE o
tandard
% BARCLAYS

€

Chartered &

Deutsche Bank

/
X .
7.y CAPITAL

Haskell / Rust

b

O’'Caml and Finance

Domain-Specific Languages

Composing Contracts:
An Adventure in Financial Engineering

Functional pearl

Simon Peyton Jones
Microsoft Research, Cambridge
simonpj@microsoft.com

Abstract

Financial and insurance contracts do not sound like promis-
ing territory for functional programming and formal seman-
tics, but in fact we have discovered that insights from pro-
gramming languages bear directly on the complex subject
of describing and valuing a large class of contracts.

We introduce a combinator library that allows us to de-
scribe such contracts nreciselv. and a comnositional denota-

Jean-Marc Eber
LexiFi Technologies, Paris
jeanmarc.eber@lexifi.com v-sewardj@microsoft.com

Julian Seward
University of Glasgow

At this point, any red-blooded functional programmer
should start to foam at the mouth, yelling “build a com-
binator library”. And indeed, that turns out to be not only
possible, but tremendously beneficial.

The finance industry has an enormous vocabulary of jargon
for typical combinations of financial contracts (swaps, fu-
tures, caps, floors, swaptions, spreads, straddles, captions,
European options, American options, ...the list goes on).
Treating each of these individually is like having a large

International Conference on Functional Programming, Sep 2000

v0LexiFI

8

<9 Digital Asset

DAML

b

@ DEON DiGiTAL

Business Engineer

Marlowe

ko

[NON J [Meadow - Blockly
< cC 0

Observation
Contract
Money

CONTRACT

x +

@ https://input-output-hk.github.io/marlowe/

CommitCash
with id §B
person with id (£
may deposit
ADA redeemable on block [} or after,
if money is committed before block
continue as

ConstMoney (i) ADA

CommitCash
with id &)
person with id 3
may deposit |
ADA redeemable on block [} or after,
if money is committed before block 1)
continue as

ConstMone

When as soon as observation

Both
enforce both
RedeemCC
allow the commit
with id §B
to be redeemed then

continue as L Null

RedeemCC
allow the commit
with id
to be redeemed then

continue as L Null
N

w & & 69

®

CommitCash (IdentCC 1) 1
(ConstMoney 100)
10 200
(CommitCash (IdentCC 2) 2
(ConstMoney 20)
20 200

100
(Both (RedeemCC (IdentCC 1) Null)

(Pay (IdentPay 1) 2 1
(ConstMoney 20)
200

(RedeemCC (IdentCC 1) Null))
Null

(RedeemCC (IdentCC 2) Null))

(When (PersonChoseSomething (IdentChoice 1) 1)

(Both (RedeemCC (IdentCC 1) Null)
(RedeemCC (IdentCC 2) Null))))

-> Blockly to Code Code to Blockly <- Clear

Use Haskell embedding editor (Fay)

Current block: o

(Contract state:

Execute

(L1, [1)

[Input:

(1, 01, 01, 0D

Smart interface Manual interface

Potential actions

Refresh

P1: Make commit (with id: 1) of 100 ADA expiring on: 200

Add action

P1: Choose 0

for choice with id 1

Add action

Output:

[Meadow - Blockly X % Meadow

cC O

@& https://david.marlowe.iohkdev.io

Meadow

HASKELL EDITOR SIMULATION

Demos: Escrow ZeroCouponBond

module Escrow where
import Marlowe
{-# ANN module "HLint: ignore" #-}

main :: I0 OO
main = putStrLn $ prettyPrint contract

coNOUTHA WN B

contract :: Contract
contract = Commit 1 iCCl alice
(Constant 450)
10 100
(When (OrObs (majority_chose refund)
(majority_chose pay))
920
(Choice (majority_chose pay)
(Pay 2 iCC1 bob
(Committed iCC1)
100
Null
Null)
(redeem_original 3))
(redeem_original 4))

API

Privacy

ADVANTAGE
SINGLE
SOURCE

OF TRUTH

Eliminate gap between design, implementation and testing

Traditional approach

Specifies
requirements in
text document

Business Analyst

Reads specs
and writes codes

Business
Engineer

Developer

Reads specs,
writes and
conducts tests

Tester

Deon Digital approach

Design in business
process formulation
Implementation
done automatically:
Process = System
Verification

and testing

done while
designing process

Formal Methods

é

[Programming Language Founc X -+

c o

017

& https://plfa.github.io @ Y n @& (V)

Programming Language Foundationsin Agda Table of Contents Getting Started

Table of Contents

This book is an introduction to programming language theory using the proof assistant Agda.

Comments on all matters—organisation, material to add, material to remove, parts that require better
explanation, good exercises, errors, and typos—are welcome. The book repository is on GitHub. Pull
requests are encouraged.

Front matter

e Dedication
e Preface

Part 1: Logical Foundations

e Naturals: Natural numbers
e Induction: Proof by induction
e Relations: Inductive definition of relations

N

\

XXI SBMF =
-
Ly

SBMF 2018 Best Paper Award
1" Place

Philip w

adler

ngua

3@ Foundations in Agda

—) Wt
hammad Mougay Adolfo Aimeida Duran “:é“w“:n‘:”'

hos

)

M A NDR A

REASONING AS A SERVICE®

