Adam Koltun

Marketing Manager

The Quantum Resistant Ledger

The Quantum-Resistant Ledger

• : .

Deploying Winternitz OTS+ Signatures

in an

Extended Merkle Signature Scheme (XMSS)

for the purpose of

Securing a Blockchain Network

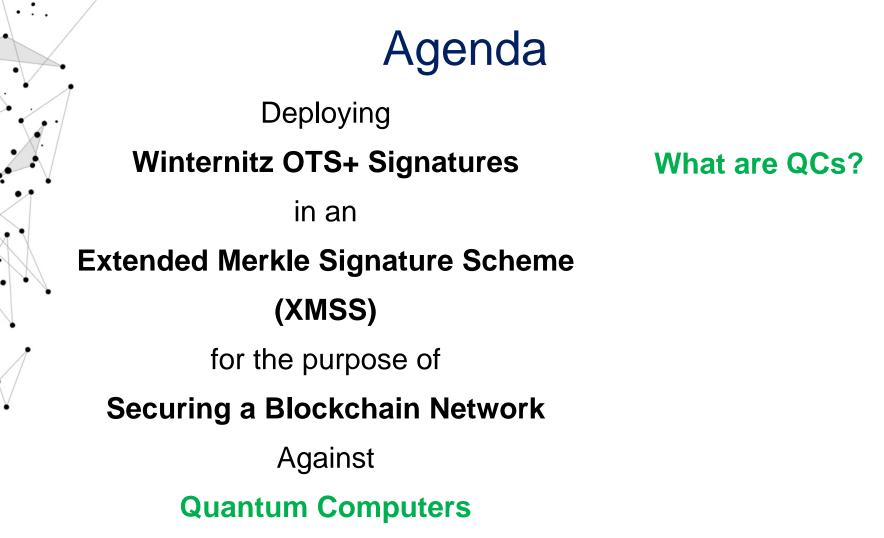
Against

Quantum Computers

Why should I pay attention?

Bitcoin Is Not Quantum-Safe, And How We Can Fix It When Needed

by Vitalik Buterin Jul 30, 2013 11:42 PM EST



Low

BITCOIN SECURITY OCTOBER 16, 2016 18:58

Quantum Computers Will Destroy Bitcoin, Scientists Warn

MIT The Washington Post ections = coindesk Technology Democracy Dies in Darkness Blockchain 101 Technology Markets Business Review **National Security** NSA seeks to build quantum computer **Business Impact Quantum Computers Pose** that could crack most Quantum Computers Could Jack Imminent Threat to Bitcoin types of encryption Your Crypto Private Key in 10 Years, Security **Researchers Say** By Steven Rich and Barton Gellman January 2, 2014 Semail the author

What are **Quantum** Computers?

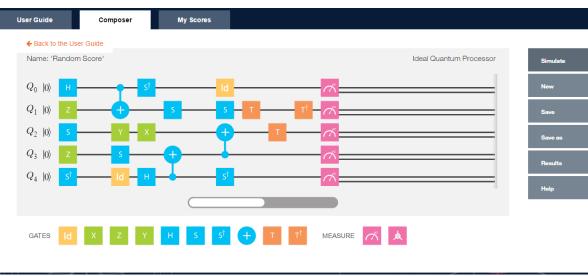
Computers exploiting quantum mechanics

Traditional Computer Circa 1961. PDP-1

Quantum Computer Circa 2017

Governments, and many others..

0 1 Bits

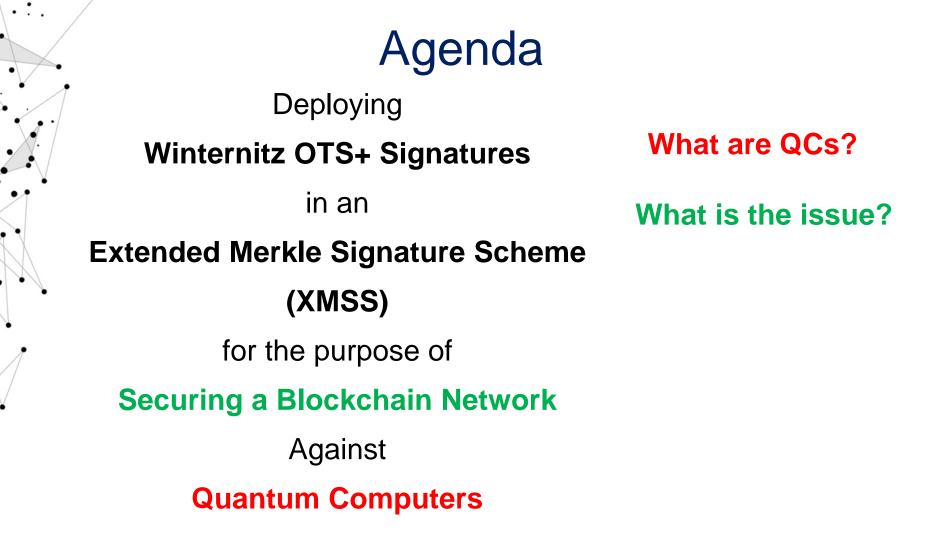

- Can take two possible values 0 or 1.
 - Can be easily linked to one another.

- Can be a superposition of both 0 and 1 at the same time.
- Every qubit doubles the amount of positions (1=2, 2=4, 3=8, etc.)
- Difficult to link to one another

What comprises a Quantum Computer?

- Uses qubits instead of bits like a traditional computer
- A quantum computer with n qubits can be in an arbitrary superposition of up to 2ⁿ different states simultaneously!
- Allows for **exponential increase in computational power**. For every qubit added to a system, the amount of alternatives that can be processed in parallel doubles. i.e. 3 qubits can compute 8 values, 4 qubits can compute 16 values *simultaneously*.

When can I use one?


IBM Q Experience

 For researchers & lay people to experiment on quantum computers

Q# from Microsoft

- Not for direct coding of quantum computers
- For writing sub programs that run on a quantum processor, under control of a traditional computer

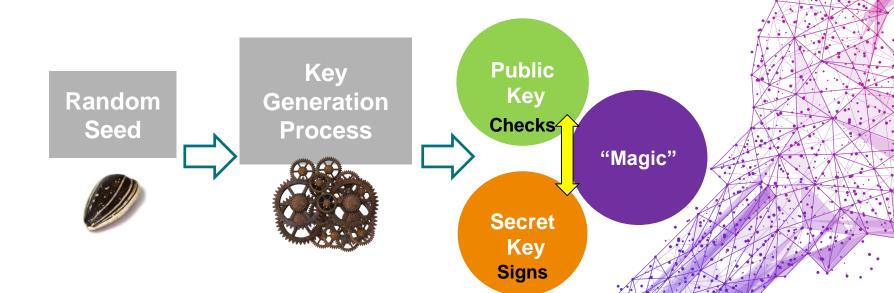
Cryptography Crash Course!

- All cryptographic methods are based upon one or more assumptions
- More assumptions = more failure points
- If the assumption is broken, the crypto is broken

A history of assumptions

 Walls were great at defending against medieval siege tech

 Assumption: the amount of time to breach them would take so long as to leave the walls functionally secure


Then there was Dynamite!

Walls that used to be able to withstand years of abuse suddenly could be taken down in a matter of hours or days

Cryptography Crash Course! Signatures

When Bob wants to prove to the World that he

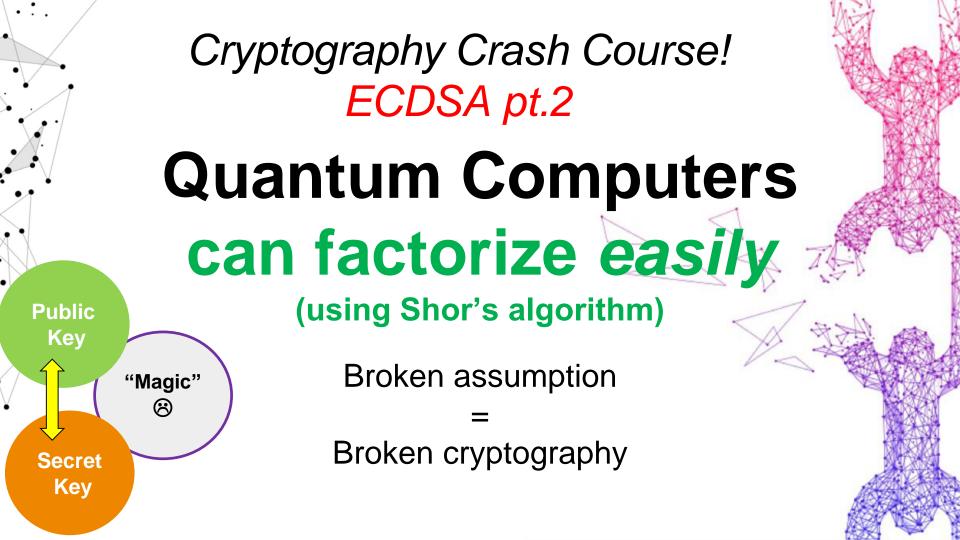
approves something.

Cryptography Crash Course! Signatures pt.2

- Bob shows the world his Public Key
- Bob uses his Secret Key to sign
- Anyone can **Deposit**, only Bob can **Withdraw**

Cryptography Crash Course! ECDSA

Used by Bitcoin, Ethereum, most cryptocurrencies


ASSUMPTION

It is hard for computers to factorize large numbers.

It is currently possible to crack ECDSA,

but takes too long to be worth it.

Deploying Winternitz OTS+ Signatures in an **Extended Merkle Signature Scheme** (XMSS) for the purpose of

• : .

What can be done?

What is the issue?

What are QCs?

Securing a Blockchain Network

Against

Quantum Computers

Post Quantum Cryptography!

A solution to resist both Traditional and Quantum

Computers

But also applicable to a **Blockchain**

- Can't be too slow
- Can't be too large (signature size)
- Must be provably secure
- Minimal failure points (assumptions)
- Has been peer-reviewed & scrutinized

Post Quantum Cryptography!

Lots of research and many alternatives!

- Lattice-based cryptography
- Multivariate cryptography
- Hash-based cryptography
- Code-based cryptography
- Super-singular elliptic curve isogeny cryptography

Post Quantum Cryptography!

Lots of research and many alternatives!

- Lattice-based cryptography
- Multivariate cryptography
- Hash-based cryptography
- Code-based cryptography
- Supersingular elliptic curve isogeny cryptography

Hash Based Cryptography

One-way functions

- Like a cake you cannot determine specific amounts of the individual ingredients postbake
- Also, one cannot un-bake a cake back into its individual ingredients

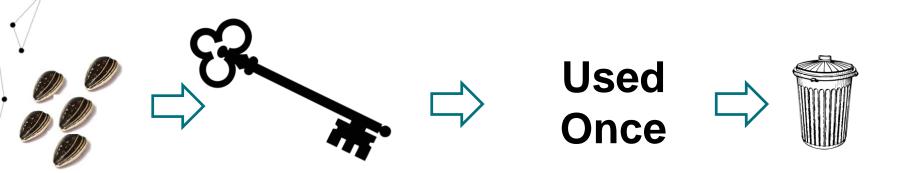
Advantages

- **Simple** security assumptions (fewer failure points)
- **Fast** to compute, hard to crack
- Some examples:
 - Only rely on the security of one-way functions
 - Lamport One Time Signatures (OTS) (1979)
 - Winternitz OTS Signatures (1979)
 - Developed by Ralph Merkle, inspired by Robert Winternitz

Winternitz OTS+ = One Time Signature

- Quantum Computers struggle with hashes
- Signatures are relatively small
- Keysizes are relatively small
- Makes minimal security assumptions (minimal fail points)

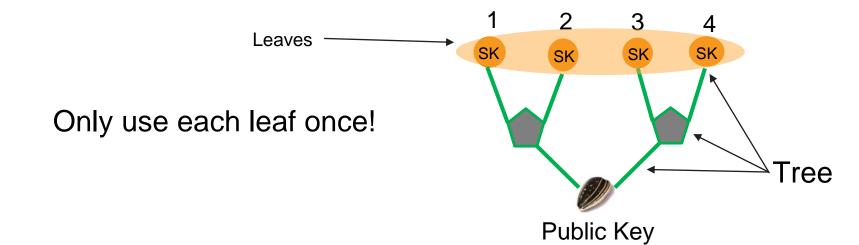
It is not all rainbows and unicorns



Winternitz OTS+ = One Time Signature

Bob can only sign once, and he needs to change his Public Key every time!

That means changing **wallet addresses** every time!



XMSS (Extended Merkle Signature Scheme)

Bob grows a tree full of secret keys!

All are linked to the same Public Key at the root

BUT! He **must remember** the leaves he has used!

XMSS (Extended Merkle Signature Scheme) **The Good:** The tree can be VERY high and have many leaves The Danger: Bob must never sign twice with the same secret key! 4 Leaves SK SK SK SK Only use each leaf once! ree **Public Key**

Conclusion

- We don't need to wait for Quantum Supremacy.
- A single actor could disrupt the cryptocurrency economy
 - Companies are making a lot of public progress
- Government programs have likely made more progress than they have publicized

Conclusion

- Upgrading in cryptocurrency is not easy. BTC is an example of political struggles with respect to upgrading.
- It is usually easier to implement changes in the initial codebase, than to add them in later